80 research outputs found

    TO EVALUATE THE EFFECT OF PAPAYA - TANKAN KSHAR SUTRA IN RECURRENT PILONIDAL SINUS

    Get PDF
    Shalya Tantra is a branch of Ayurveda which deals with surgical as well as parasurgical procedures like Kshar karma, Agnikarma & Raktamokshana. This study elicits a case report of a recurrent Pilonidal sinus treated by the intervention of Papaya-Tankan Kshar Sutra, which cured and demolished the symptoms. The incidence of Pilonidal sinus is approximately 26 / 100,000; it is a benign disease that occurs in young adults in the age group of 15 - 30 years after puberty when sex hormones are known to affect pilosebaceous glands & change healthy body hair growth. The etiology and pathogenesis of Pilonidal sinus are not clear although the disease is thought to be related to the accumulation of weak and lifeless hair in the intergluteal region. Over time, foreign body reaction occurs, causing abscess and sinus formation. Pilonidal sinus can be correlated with Nadivrana in Ayurveda. Acharya Sushruta the father of surgery has described Nadivrana first time in detail including etiological factors, classifications, symptomatology, pathology, complications & its management in a most scientific manner

    Understanding the Impact of Early Citers on Long-Term Scientific Impact

    Full text link
    This paper explores an interesting new dimension to the challenging problem of predicting long-term scientific impact (LTSI) usually measured by the number of citations accumulated by a paper in the long-term. It is well known that early citations (within 1-2 years after publication) acquired by a paper positively affects its LTSI. However, there is no work that investigates if the set of authors who bring in these early citations to a paper also affect its LTSI. In this paper, we demonstrate for the first time, the impact of these authors whom we call early citers (EC) on the LTSI of a paper. Note that this study of the complex dynamics of EC introduces a brand new paradigm in citation behavior analysis. Using a massive computer science bibliographic dataset we identify two distinct categories of EC - we call those authors who have high overall publication/citation count in the dataset as influential and the rest of the authors as non-influential. We investigate three characteristic properties of EC and present an extensive analysis of how each category correlates with LTSI in terms of these properties. In contrast to popular perception, we find that influential EC negatively affects LTSI possibly owing to attention stealing. To motivate this, we present several representative examples from the dataset. A closer inspection of the collaboration network reveals that this stealing effect is more profound if an EC is nearer to the authors of the paper being investigated. As an intuitive use case, we show that incorporating EC properties in the state-of-the-art supervised citation prediction models leads to high performance margins. At the closing, we present an online portal to visualize EC statistics along with the prediction results for a given query paper

    Incremental and Decremental Nonparametric Discriminant Analysis for Face Recognition

    Get PDF
    Nonparametric Discriminant Analysis (NDA) possesses inherent advantages over Linear Discriminant Analysis (LDA) such as capturing the boundary structure of samples and avoiding matrix inversion. In this paper, we present a novel method for constructing an updated Nonparametric Discriminant Analysis (NDA) model for face recognition. The proposed method is applicable to scenarios where bursts of data samples are added to the existing model in random chunks. Also, the samples which degrade the performance of the model need to be removed. For both of these problems, we propose incremental NDA (INDA) and decremental NDA (DNDA) respectively. Experimental results on four publicly available datasets viz. AR, PIE, ORL and Yale show the efficacy of the proposed method. Also, the proposed method requires less computation time in comparison to batch NDA which makes it suitable for real time applications

    The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter

    Full text link
    Large pre-trained transformers are show-stealer in modern-day deep learning, and it becomes crucial to comprehend the parsimonious patterns that exist within them as they grow in scale. With exploding parameter counts, Lottery Ticket Hypothesis (LTH) and its variants, have lost their pragmatism in sparsifying them due to high computation and memory bottleneck of the repetitive train-prune-retrain routine of iterative magnitude pruning (IMP) which worsens with increasing model size. In this paper, we comprehensively study induced sparse patterns across multiple large pre-trained vision and language transformers. We propose the existence of -- essential sparsity defined with a sharp dropping point beyond which the performance declines much faster w.r.t the rise of sparsity level, when we directly remove weights with the smallest magnitudes in one-shot. In the sparsity-performance curve We also present an intriguing emerging phenomenon of abrupt sparsification during the pre-training of BERT, i.e., BERT suddenly becomes heavily sparse in pre-training after certain iterations. Moreover, our observations also indicate a counter-intuitive finding that BERT trained with a larger amount of pre-training data tends to have a better ability to condense knowledge in comparatively relatively fewer parameters. Lastly, we investigate the effect of the pre-training loss on essential sparsity and discover that self-supervised learning (SSL) objectives trigger stronger emergent sparsification properties than supervised learning (SL). Our codes are available at \url{https://github.com/VITA-Group/essential\_sparsity}

    Convection-Enhanced Delivery of Antiangiogenic Drugs and Liposomal Cytotoxic Drugs to Heterogeneous Brain Tumor for Combination Therapy

    Get PDF
    Acknowledgments The authors thank RK Gupta for providing the clinical DCE-MRI data of human brain tumors. Funding Ajay Bhandari would like to acknowledge the support received by a grant from the Science and Engineering Research Board (Grant Number: SRG/2021/000053) and the Indian Institute of Technology (Indian School of Mines), Dhanbad (Grant Number: FRS (147)/2020-2021/MECH). Wenbo Zhan would like to acknowledge the support received from the Children with Cancer UK under the project Children’s Brain Tumor Drug Delivery Consortium (Grant Number:16-224). Both authors would like to acknowledge the support received from the Royal Society (Grant Number: IES\R1\221015).Peer reviewedPublisher PD

    Physics-Driven Turbulence Image Restoration with Stochastic Refinement

    Full text link
    Image distortion by atmospheric turbulence is a stochastic degradation, which is a critical problem in long-range optical imaging systems. A number of research has been conducted during the past decades, including model-based and emerging deep-learning solutions with the help of synthetic data. Although fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions recently, the training of such models only relies on the synthetic data and ground truth pairs. This paper proposes the Physics-integrated Restoration Network (PiRN) to bring the physics-based simulator directly into the training process to help the network to disentangle the stochasticity from the degradation and the underlying image. Furthermore, to overcome the ``average effect" introduced by deterministic models and the domain gap between the synthetic and real-world degradation, we further introduce PiRN with Stochastic Refinement (PiRN-SR) to boost its perceptual quality. Overall, our PiRN and PiRN-SR improve the generalization to real-world unknown turbulence conditions and provide a state-of-the-art restoration in both pixel-wise accuracy and perceptual quality. Our codes are available at \url{https://github.com/VITA-Group/PiRN}.Comment: Accepted by ICCV 202

    Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and A New Physics-Inspired Transformer Model

    Full text link
    Image restoration algorithms for atmospheric turbulence are known to be much more challenging to design than traditional ones such as blur or noise because the distortion caused by the turbulence is an entanglement of spatially varying blur, geometric distortion, and sensor noise. Existing CNN-based restoration methods built upon convolutional kernels with static weights are insufficient to handle the spatially dynamical atmospheric turbulence effect. To address this problem, in this paper, we propose a physics-inspired transformer model for imaging through atmospheric turbulence. The proposed network utilizes the power of transformer blocks to jointly extract a dynamical turbulence distortion map and restore a turbulence-free image. In addition, recognizing the lack of a comprehensive dataset, we collect and present two new real-world turbulence datasets that allow for evaluation with both classical objective metrics (e.g., PSNR and SSIM) and a new task-driven metric using text recognition accuracy. Both real testing sets and all related code will be made publicly available.Comment: This paper is accepted as a poster at ECCV 202

    Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication

    Full text link
    Graphs are omnipresent and GNNs are a powerful family of neural networks for learning over graphs. Despite their popularity, scaling GNNs either by deepening or widening suffers from prevalent issues of unhealthy gradients, over-smoothening, information squashing, which often lead to sub-standard performance. In this work, we are interested in exploring a principled way to scale GNNs capacity without deepening or widening, which can improve its performance across multiple small and large graphs. Motivated by the recent intriguing phenomenon of model soups, which suggest that fine-tuned weights of multiple large-language pre-trained models can be merged to a better minima, we argue to exploit the fundamentals of model soups to mitigate the aforementioned issues of memory bottleneck and trainability during GNNs scaling. More specifically, we propose not to deepen or widen current GNNs, but instead present a data-centric perspective of model soups tailored for GNNs, i.e., to build powerful GNNs. By dividing giant graph data, we build multiple independently and parallelly trained weaker GNNs (soup ingredient) without any intermediate communication, and combine their strength using a greedy interpolation soup procedure to achieve state-of-the-art performance. Compared to concurrent distributed GNN training works such as Jiong et. al. 2023, we train each soup ingredient by sampling different subgraphs per epoch and their respective sub-models are merged only after being fully trained (rather than intermediately so). Moreover, we provide a wide variety of model soup preparation techniques by leveraging state-of-the-art graph sampling and graph partitioning approaches that can handle large graphs. Codes are available at: \url{https://github.com/VITA-Group/graph_ladling}.Comment: Accepted in ICML 2023. Included comparison with a concurrent work (Jiong et. al. 2023) which independently presents similar ideas, among other SOTA distributed GNN training work
    • …
    corecore